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PREFACE:

This final technical report presents the results of the efforts on NASA — Langley
Research Grantt NAG-1-1773. The NASA-Langley technical monitor was Dr. Raju
Ivantury of the Mechanics of Materials Division.

The finite element analysis was performed by Dr. Ann Peck. The experimental tests
(static and fatigue) were performed by the Composite Materials Research Group (CMRG)
within the Department of Mechanical Engineering at the University of Wyoming. Mr. Scott
L. Coguill and Ms. Ronda Coguill were the major contributors to this effort. Compilation
and analysis of the experimental results were performed by Dr. Peck.

Use of commercial products or names of manufacturers in this report does not
constitute official endorsement of such products or manufacturers, either expressed or

implied, by the National Aeronautics and Space Administration.
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ABSTRACT: As composites are introduced into more complex structures with out-of-
plane loadings, a better understanding is needed of the out-of-plane, matrix-dominated
failure mechanisms. This work investigates the transverse tension fatigue characteristics
of IM6/3501 composite materials. To test the 90 degree laminae, a three-point bend test
was chosen, potentially minimizing handling and gripping issues associated with tension
tests. A finite element analysis was performed of a particular specimen configuration to
investigate the influence of specimen size on the stress distribution for a three-point bend
test. Static testing of 50 specimens of 9 different sized configurations produced a mean
transverse tensile strength of 61.3 Mpa (8.0 ksi). The smallest configuration (10.2 mm
wide, Span-to-thickness ratio of 3) consistently exhibited transverse tensile failures. A
volume scale effect was difficult to discern due to the large scatter of the data. Static
testing of 10 different specimens taken from a second panel produced a mean transverse
tensile strength of 82.7 Mpa (12.0 ksi). Weibull parameterization of the data was
possible, but due to variability in raw material and/or manufacturing, more replicates are
needed for greater confidence. Three-point flex fatigue testing of the smallest
configuration was performed on 59 specimens at various levels of the mean static
transverse tensile strength using an R ratio of 0.1 and a frequency of 20 Hz. A great deal
of scatter was seen in the data. The majority of specimens failed near the center loading
roller. To determine whether the scatter in the fatigue data is due to variability in raw
material and/or the manufacturing process, additional testing should be performed on

panels manufactured from different sources.

KEYWORDS: composite materials, graphite/epoxy, transverse tensile strength, flexural
fatigue, Weibull statistics
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INTRODUCTION

A great deal of research has been performed characterizing the in-plane fiber-dominated
properties, under both static and fatigue loading, of advanced composites materials. This
understanding is imperative wherever composite materials are used in order to gain a better
understanding of the reliability of structures when designing _for maximum efficiency in weight,
volume, and payload. However, as composites are introduced into more complex loading states,
there is a need to better understand some of the out-of-plane and matrix-dominated phenomena
which have not received as much attention. For instance, consider the design of bonded
composite airframe structure where repeated, cyclic out-of-plane bending may occur. Two such
scenarios where this loading may take place are in a compressively loaded post-buckled panel or
a full-scale pressurized fuselage such as the one investigated by the NASA Advanced Composite
Technology (ACT) program. In the latter case, as a result of the internal pressurization within
each panel bay, the skin will bulge or “pillow” as shown in Figure 1. These out-of-plane
deformations create local bending moments along the skin-stiffener and skin-frame interfaces,
which in turn create shear and peel stresses along the various bondline [/].

Recent tests characterizing skin/stringer debond failures in reinforced composite panels where
the dominant loading in the skin is flexure along the edge of the frame indicate failure initiates as
transverse matrix cracks either in the skin or the flange near the flange tip [2]. When failure
initiated in the skin, transverse matrix cracks formed in the surface ply closest to the flange and
either initiated delaminations or created matrix cracks in the next lower ply, which in turn
initiated delaminations. When failure initiated in the flanges, transverse cracks formed in the
flange angle ply closest to the skin and initiated delaminations. In no configuration did failure

propagate through the adhesive bond layer. This is a significant finding in that the limiting



component in this particular bonded structure under internal pressurization appears not to be the
adhesive, but rather the particular skin and flange laminates, and in particular the choice and
location of the angle plies. The failure initiation site corresponded well with the site of
maximum transverse tension stress, not the site of maximum interlaminar tension site. For the
examined skin/flange configuration, the maximum transverse tension stress at failure correlated
well with the transverse tension strength of the composite [2]. Therefore, it is important to
understand how the transverse strength of the composite degrades under repeated cyclic loading.

An extensive literature search on the topic of transverse tension fatigue revealed little in the
published literature on this particular topic. Perhaps this is a result of the focus, to-date, on in-
plane loaded structures, such as composite wing skins, where matrix cracking in fatigue may be a
rare occurrence at the relatively low operating strains dictated by low velocity impact concerns,
and where matrix cracks are fairly benign if they do occur. However, for the out-of-plane loads
experienced in a composite fuselage, the onset of matrix cracking under repeated pressurization
may trigger a catastrophic failure. Hence, the need for a transverse tension fatigue
characterization is now apparent. It should be noted that there has been extensive work, both
theoretical and experimental, focusing on transverse crack formation in laminates under fatigue
loading [3]. The laminates studied have generally consisted of 90 degree plies embedded within
a general composite laminate which usually also included O degree and +45 degree plies. The
crack formation and corresponding failure stress in the 90 degree plies of the laminates differs
substantially due to the constraining effect of the non-90 degree plies. This study will focus on
the failure behavior of unconstrained 90 degree plies.

When testing 90 degree laminae, several issues must be addressed. The first is the concemn

over handling and gripping sensitivities. The handling and gripping issues may be minimized by



testing in three-point bending as opposed to testing in tension. This has an additional benefit in
that relatively small specimen sizes may be used, thereby reducing the amount of material
needed for a single replicate. A small specimen size has the added benefit of minimizing internal
heating due to the cyclic loading, and hence, allowing higher frequencies, with shorter testing
times, to be performed. This can become significant for a test that potentially may become a
standard for fatigue characterization. Adams, King, and Blackketter [4] evaluated the transverse
flexure test using unsized AU4 and AS4 fibers, sized AS4 fibers and EPON 828 resin. Span-to-
thickness ratios of the specimens ranged from 4.0 to 16.7. All the specimens produced tensile
failures and yielded similar strengths. The transverse flexure tests produced higher values of the
transverse tensile strength than standard transverse tensile tests, by as great as a factor of 2.5, as
demonstrated by the AS4/EPON 828 combination.

The transverse tension strength of graphite epoxy composites has been shown to exhibit a
volume dependence due to the inherent flaws in the microstructure. O’Brien and Salkepar
investigated the volume scale effect using AS4/3501-6 90° tensile specimens [5]. They found
the transverse tensile strength of composite laminate depends on the volume of material stressed.
The dependence reflects the presence of inherent flaws in lamina’s microstructure. As the
volume of material under tension increases, transverse tensile strength decreases. The probability
distribution function of the strength as defined by Weibull [6] is

P(g) = l-exp'(o/a)" )
where m is the shape parameter, indicating the measure of scatter in the data, and o is the

location parameter, similar to the mean of a normal distribution. Specimens of different volumes



can then be compared via a Weibull scaling law for static loading which states
where (ou); and (Guy): are the different strengths associated with the different specimens
volumes V; and V> and m is a material constant found experimentally.

The primary objective of this study was to experimentally investigate the transverse strength
of a composite under repeated cyclic loading. In this study, multiple 90° laminates of different
specimen sizes were tested in flexure under static loading to first determine an optimum
specimen configuration with ‘optimum’ being defined as the smallest sized configuration
producing transverse tensile failures consistently. Using the optimum sized configuration,
multiple 90° laminates were tested in flexure under cyclic loading to first investigate the
behavior of transverse tensile strength under fatigue loading. The data was then used to evaluate
the validity of the Weibull scale law for fatigue loading. Additional tests were conducted at
different frequencies to determine if the transverse tension fatigue strength exhibits a frequency

dependency.



FINITE ELEMENT ANALYSIS

Model Definition

A nonlinear static finite element analysis was performed using the pre-processing software
package PATRAN and its P3/FEA solver package. Figure 2 provides a schematic of the test set-
up with relevant dimensions while Figure 3 shows the experimental three-point bend test set-up.
A 2-D model was constructed. Due to symmetry considerations, only the right half of the
specimen was modelled. Figure 4 shows the finite element mesh of the model. The mesh
contained 1680 4-noded quadrilateral elements and 21 gap elements for a total of 3622 degrees
of freedom. The specimen geometry itself is very straight forward: half of the rectangular test
specimen. The loading and support rollers were modelled as follows. Only the lower right hand
exterior edge of the central 0.25 inch diameter loading roller surface was modelled. Eleven
nodes were placed along the arc representing the lower righthand edge of the roller. Gap
elements, which are the source of the analysis’nonlinearity, connected this surface to the upper
left hand section of the finite element model, which corresponds to the midsection of the upper
surfacé of the actual test specimen. The upper lefthand quarter of the 0.125 inch diameter
support roller was modelled as a block of 0.0625 inch width and depth with the isotropic
properties of steel (E =29.0 Msi, v=0.3). Gap elements connected the lower right hand section
of the specimen to the loading block. The gap lengths corresponded to the vertical distances
between the lower righthand section of the specimen and the upper lefthand surface of a 0.125
inch diameter roller. The gap stiffnesses were determined by varying the stiffnesses, running the

model, and observing the final deformations of the rollers and laminate. This variation was



performed until reasonable deformation results were obtained. A single point load representing
the average static failure load was applied at the bottom of the loading block.

Three different matenial systems were defined:

Isotropic steel: E=29.0Msi,v=03
Isotropic 90 degree IM6/3501-6 tape: E=14Msi,v=045
Orthotropic IM6/3501-6 composite: E11=21.0 Msi, E22 =E33 = 1.4 Msi,

vi2=v3=0.3,v3=03
G12 =G13 =0.75 Msi, G23 = 0.50Msi
The lower loading block mesh consisted of 80 4-noded quadrilateral elements subject to the
plane strain condition and assigned the material properties of steel. The main laminate consisted
of 1600 4-noded quadrilateral elements. The laminate was modelled under both plane stress and
plane strain conditions. The laminate was modelled first with isotropic 90 degree IM6/3501-6

tape properties and then with orthotropic IM6/3501-6 composite properties.
Model Results

The first portion of the finite element analysis focused on examininé the smallest sized
specimen configuration (w = 0.400 inches, t= 0.266 inches, (5/f ) = 3) under several different
conditions. In each case, an applied loading corresponded to 114.5 Ib was assigned to the lower
right node of the steel (plane strain) loading block. The specimen itself was modelled with the

following conditions:

Laminate Element Properties Laminate Material Properties
Case 1: Plane Strain Isotropic 90 degree IM6/3501-6 tape
Case 2: Plane Stress Isotropic 90 degree IM6/3501-6 tape
Case 3: Plane Stress Orthotropic 90 degree IM6/3501-6 composite



There was little differences in the laminate local stresses (Ox, Oy, Txy) for the three different
cases. The local stresses were defined with x along the horizontal of the specimen and y along
the vertical of the specimen. A positive shear stress exists when positive x, positive y corner of a
2-D element the element wants to move in the positive x and negative y directions. Table 1
compares the different local stresses for several elements for the three cases described above.
Figure 5 shows the location of the different elements on the mesh. Figures 6 through 8 show the

contour plots of the different stresses.

TABLE 1-- Comparison of Longitudinal, Transverse, Shear Stresses from Finite Element

Analyses
Global Longitudinal Global Transverse Stresses, Global Shear Stresses,
Stresses, ox (Ps1) oy (Ps1) Txy (Psi)
Element | Isotropic Isotropic  Orthotropic | Isotropic  Isotropic ~ Orthotropic | Isotropic  Isotropic  Orthotropic
ID Plane € Plane ¢ Plane ¢ Plane € Plane ¢ Plane o Plane £ Plane ¢ Plane ¢

4290 8743 8803 8760 2.5 1.01 0.9 3 3 3
4300 6117 6161 6159 -177 -177 -173 57 57 56
4400 1642 1652 1663 -1329 -1391 -1371 145 145 143
4439 -440 -442 -445 -250 -247 -256 1656 1656 1661
4500 -3243 -3280 -3279 -5531 -5522 -5461 622 613 607
4590 | -27900 -27430 -27500 | -30060 -28750 -28770 12430 12720 12850
4599 -5750  -5814 5805 6.6 2.6 2.5 41 38 38

The next section will focus on the results of the orthotropic plane stress model. At the
centerline of the specimen, the maximum longitudinal tensile stress on the lower surface

(element 4290, o = 8760 psi) is substantially lower than the maximum longitudinal compressive

stress on the upper surface of the specimen (element 4590, ox = -27500 psi). However,



examining the compressive stresses in the elements just below the upper surface, the magnitude
of the compressive stresses (element 4570, o, = -9846 psi, element 4560, o = -7638 psi) are
approximately the same as those of the tensile stresses near the lower surface. The discrepancy
is due to the immediate contact of the specimen with the upper roller support and the minimal
discretization of the finite element mesh at this particular loading location.

The maximum shear stress was located off the centerline of the specimen and approximately
at the midplane of the specimen’s thicknesses. The maximum shear stress of the orthotropic
plane stress case was approximately 1600 psi.

Again considering the orthotropic plane stress case, at the centerline of the specimen, the
maximum transverse stress is located on the upper surface of the specimen at its centerline
(element 4590, oy = -28770 psi). Moving down through the specimen thickness along the
centerline, the local transverse stresses decline. At the lower surface of the specimen, the
transverse stress is negligible (element 4290, oy = 0.9 psi). Considering the transverse stresses of
the elements located approximately 10% of the half-specimen length off the specimen centerline
and moving down through the specimen thickness, the magnitudes decrease from —2400 psi
(element 4503, located approximately 20% of the thickness from the upper surface) to —1100 psi
(element 4403, located approximately 50% of the thickness from the upper surface) to —25 psi
(element 4253, located approximately 7% of the thickness from the lower surface).

From a “Strength of Materials™ approach, the ratio of maximum transverse stress to maximum
shear stress for the three-point bend test equals twice the span-to-thickness (S/t) ratio [2]. The
maximum transverse stress would appear at the outer surfaces of the specimen’s center location
with respect to length. The shear stress distribution would be a parabolic distribution through the

thickness with the maximum stress appearing at the midplane of the specimen’s thickness. The



finite element analysis predicted the maximum tensile stress on the lower surface of the
specimen’s centerline (element 4290, oy = 8760 psi) and the maximum shear stress
approximately at the midplane of the specimen’s thickness (element 4439, 1660 psi). For the
modelled specimen configuration (w = 0.400 inches, t = 0.266 inches , (S/t) = 3), the maximum
transverse stress to maximum shear stress ratio should equal 6. Comparing the above stated
stresses, the finite element model predicted the ratio of transverse stress to maximum shear stress
to be a value of 5.28.

The different strengths associated with unidirectional AS/3501 graphite/epoxy composites [7],
similar to the IM6/3501-6 material system which was used in the finite element model, are listed

below.

Longitudinal Properties: oLr~210 Ksi (1447 Mpa) oLc~210 Ksi (1447 Mpa)
Transverse Properties: orr~ 7.5 Ksi (51.7 Mpa) otc~ 29.9 Ksi (206 Mpa)
Shear Properties: 112~ 13.5 Ksi (93 Mpa)

Comparing the different stresses induced in the specimen under a 114.5 Ib force, the
specimen’s maximum longitudinal stress of 8760 psi corresponds closely to the transverse tensile
strength. The longitudinal compressive stresses near the center roller approach the transverse
compressive strength. However, further refinement of the model, namely further discretization
of the mesh, near the support would be necessary to validate if those stresses are accurate or

erroneous due to a coarse model near a reaction point.



MATERIALS AND SPECIMEN PREPARATION

Two 30.48 cm by 45.72 cm (12 inch by 18 inch) panels of unidirectional prepreg IM6/3501-6
graphite/epoxy material were layed up and cured in an autoclave according to the manufacturer’s
specifications. The nominal cured ply thickness is 0.188 mm (0.0074 inch). Each panel was
constructed of 36 plies.

The two panels were ultrasonically C-scanned after manufacturing to assess the integrity of
the manufacturing process. Each panel exhibited patches of possible voids, located near the
borders of the panels. The first panel exhibited a greater amount of non-uniformity than the
second panel. Using the C-scans as a guide, specimens were cut from the regions of the panels
exhibiting the most uniform C-scan patterns.

Nine different test specimen configurations were used in the static study. Table 2 indicates
the different widths (w) and span-to-thickness (S/f) ratios examined. Different sized
configurations were tested as an initial objective of this study was to determine the minimum-
sized specimen configuration which would consistently generate a transverse tensile failure

under three-point bending.

TABLE 2-- Static Test Specimen Configurations and Number of Test Samples.

Specimen Configurations and Number Tested

Nominal Width, Span-to-thickness Ratio, (5/) ™
w (mm)* 3 4 6 8
10.2 (0.40) A D (10) GQ) K Q)
12.7 (0.50) B (10) E9)
15.2 (0.60) C (6) F (10) M (3)

* Number in parentheses is value in inches where 1 in. =25.4 mm
® Letter indicates Specimen Configuration
° Number in parentheses is number of samples tested

10



The first set of static specimens was cut from Panel #1 using a diamond-wheel saw blade.
Edges were not polished before testing so as not to bias results by reducing edge flaws or
possibly internal flaws. Static and fatigue specimens from Panel #2 were cut using a water-
cooled aluminum oxide abrasive wheel (180 grit) then edge ground to their final dimensions.
Specimen sizes were determined per a pre-established cutting plan, which purposely distributed
the different configuration sizes throughout the panel so as not to concentrate a single
configuration to one area of the panel. The specimen cross-sectional dimensions were measured
using ball-point calipers at the center location along the specimen length. A single length
measurement was taken along the centerline of the specimen.

Table 3 shows the average nominal ply thicknesses of the static and fatigue specimens. The
average laminate thickness for the specimens tested from a particular panel and under a
particular loading (static vs fatigue) was divided by the number of plies to obtain a nominal ply
thickness (#). The product of the nominal ply thickness and the manufacturer’s supplied fiber
density (1.7325 g/cm®) was divided into the assumed fiber aerial weight (190 g/m?) for
IM6/3501-6 to obtain estimated fiber volume fractions. These estimated fiber volume fractions

are compared with experimentally measured fiber volume fractions in Table 3.

TABLE 3--Nominal Ply Thickness and Fiber Volume Fractions, IM6/3501-6 graphite-epoxy.

Panel #1 Panel #2
Static *° Static *° Fatigue *°
Nominal Ply Thickness, t (mm)  0.188 [0.99] 0.191 [1.0] 0.191 [1.02]
(0.0074) (0.0075) (.0075)
Estimated Vi, % 58.0 57.9 57.7
Measured Vg, % 594 [0.84] 59.8 f1.31]

* Number in parentheses is value in inches where 1 in. =25.4 mm
> Number in brackets is Coefficient of Variation

11



Visual examination of the specimens revealed pitting in the majority of the fatigue specimens.
In most instances, the pits were approximately pinpoint in size and shallow in depth. In a few
instances, the pits were larger in size. The pits were located within approximately the upper 25%
of the laminate thickness as measured from the upper surface of the specimen, which
corresponds to the bottom surface of the manufactured panel. The number of pinpoint-sized pits
in a particular specimen was of the order of 20 to 30. The pits were distributed along the length
of the specimens. Because the pits were located on the compressive side of specimens when

loaded, they were not believed to have a significant effect on the results.
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EXPERIMENTAL PROCEDURE

Fiber volume measurements were performed per the following ASTM standards: D317/
Fiber Volume by Acid Digestion, D792 Density by Water Displacement, and D2734 Void
Content.

Static transverse tension tests were performed using the three-point flex procedure as
specified in ASTM D790-92, Standard Test Method for Flexural Properties of Unreinforced and
Reinforced Plastics and Electrical insulating Materials. Figure 2 provides a schematic of the test
set-up with relevant dimensions. The fixture was equipped with 6.35 mm (0.25 inch) diameter
loading roller and 3.175 mm (0.125 inch) diameter support rollers. Span-to-thickness (S/t) ratios
of 3, 4, 6, and 8 were used as required for the static tests. The support rollers were located using
the center loading roller as a datum. The specimens were loaded into the fixture with the
midpoint of the specimen aligned under the loading roller. Adjustments to the centering of the
specimen were made by eye. As the specimens were fairly short in length, there was little
extension of an individual specimen beyond the support rollers. All specimens were tested with
the compression face of the specimen corresponding to the bottom of the panel. The fixture was
mounted on a 22.24 kN (5000 Ib) MTS brand servo-hydraulic universal test frame with an MTS
TestStar digital controller under ambient laboratory conditions, as shown in Figure 3. The test
frame has a current certification of calibration providing traceablility to NIST standards. Static
tests were performed at a constant ram speed of 1.27 mm/min (0.05 in/min) with a stroke range
set at 12.7 mm (0.5 inches). After an individual specimen failure, the specimen was removed
and the moment arm distance from the centerline of the edge support roller to the location of

tensile failure, defined as /, measured. The bending moment was calculated as the product of
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half the failure load P and the moment arm (/). The nominal transverse tensile stress was
calculated as
VAL
®3)
using the nominal cross-sectional dimensions w and ¢. Local cross-sectional dimensions were
taken close to the failure location.

Fatigue tests were performed at a variety of frequencies and amplitudes under load control.
The specimens were mounted in the same machine under the same procedure as described above
for the static specimens. Fatigue tests were performed at a constant ram speed of speed of 1.27
mm/min (0.05 in/min) with a stroke range set at 12.7 mm (0.5 inches). The average ultimate
transverse tensile strength (UTS) obtained from the Panel #2 “A” configuration static specimens
(w = 10.2 mm and (S/t) = 3) was used to calculate the load levels for fatigue. The majority of
fatigue tests were run under the conditions R = 0.1, where R equals the ratio of the minimum
applied load to the maximum applied load. Tension-tension fatigue tests were performed at
75%, 80%, 85%, 95% UTS levels with a frequency of ® equal to 5 Hz. Additional tests were
performed at © equal 20 Hz to examine the effect of frequency. A few tests were run at R = 0.5
to examine the effect of load ratio. Tests were stopped at 10° cycles if no failure occurred.
Several tests were run beyond that limit and stopped at 10° cycles if no failure occurred. The

same operator conducted all the fatigue tests.
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EXPERIMENTAL RESULTS

Material Properties of Fiber Volume

The fiber, resin, and void volume fractions were determined according to ASTM
specifications assuming a resin density of 1.262 g/cm’ and fiber density of 1.7325 g/cm®. Tests
were performed on three specimens from each of the two panels. The measured fiber volume
values are given in Table 3 with the coefficient of variation values shown in brackets. The
estimated fiber volume fractions are slightly lower than the measured values. The high
variability in laminate thickness contributes to the deviation in the estimated and measured fiber

volume fraction values.

Transverse Tensile Static Strength Measurements

A summary of the results of the static tests is seen in Table 4. Individual specimen data (static
loading) are found in Table 5. The nominal strengths are listed for the different configurations
using the nominal cross-sectional dimensions of the individual specimens. Strengths are also
listed for the different configurations using the local cross-sectional dimensions measured as
described in the Experimental Procedure section. The coefficients of variation of the strength for
the different configurations are also given. The number of specimens tested per configuration is
given in Table 2 (see page 10).

All the specimens exhibited a transverse tensile failure regardless of the width or span-to-
thickness ratio. For the specimens of (S/t) equal 3, the nominal transverse tensile strength
increased as the width increased. For the specimens of nominal width 10.2 mm (0.4 in), there
was little difference in strength except when (S/t) equaled 6. Only two specimens of that

particular configuration were tested. The coefficient of variations (CV) for the different

15



configurations ranged from 7.8, corresponding to Configuration G ((S/t) = 6, W = 10.2 mm) to
33% for Configuration C ((S/t) =3, W = 15.2 mm). The average CV for the nominal transverse
tensile strength for Panel #1 was 22.1%. Because of the large scatter in strength of the different
sized specimens from Panel #1, specimens for the smaller configurations (A & B) were tested
from the second panel. The overall nominal transverse tensile strength was considerably higher
(87.5 MPa) in Panel #2 compared to Panel #1 (61.3 MPa). Five specimens of configuration A
and B were each tested. The CV’s were considerably smaller with an overall average CV of
8.0% for Panel #2 static transverse tensile strength.

Figures 9 and 10 show the static strengths for the various specimens from Panel #1 as a
function of the nominal cross-sectional area and the ratio of (S/t). Each plot shows a great deal
of scatter for a given width or (S/t) ratio. Assuming a volume dependency on the strength, the

strength should decrease with increasing cross-sectional area for a given width. This trend is not

TABLE 4--Summary of Nominal and Local Transverse Tensile Strength in MPa
for 90° bend tests, IM6/3501-6 graphite-epoxy.

Nominal Transverse Tensile Strength

Panel #1 Panel #2
&) (&)
Width, w (mm) 3 4 6 8 3
10.2 56.3[159] 59.6[13.7] 689[157] 59.5[9.98] 91.7[8.9]
12.7 58.5[15.6] 63.1[18.8] 82.7[7.1]
15.2 67.5[23.6] 67.5[14.3] 52.4 [6.58]
Local Transverse Tensile Strength
Panel #1 Panel #2
(S/1) (&)
Width, w (mm) 3 4 6 g 3
10.2 57.7(13.3] 603 [31.5] 69.6[835] 60.2[995] 91.0[8.8]
12.7 59.1[15.9] 63.7[28.6] 82.0 [6.8]
15.2 67.9133.1] 68.2[13.6] 52.9[12.6]

* Number in brackets is Coefficient of Variation

16



TABLE 5--Individual Specimen Data for Transverse Tensile Strength, 90° Bend Tests.

PANEL 1 RESULTS

Nominal Local Nominal Local
Specimen (SR) WAGth, w Thickness, { Width, w Thicknese, ¢ Fallure Load, P Moment Arm, / Strees, o CV Stress, o CV
> ] {mm) {mm) [mm) {mm) L] {men) (MPa} (%) (MP3) (X}
SA4 3 10.26 6.83 10.24 6.82 1108 9.19 63.8 64.2
SAS 3 10.26 8.76 10.27 8.75 894 11.73 67.2 67.2
SA7 3 10.26 8.93 10.28 8.47 925 7.33 41.2 47.4
SA3 3 10.29 8.91 10.28 6.89 g70 9.73 57.6 58.1
SAS 3 10.28 8.78 10.26 8.77 943 8.38 50.0 50.2
SA10 3 10.31 8.73 10.26 68.71 g74 9.31 58.2 58.9
269 8.3 189 §7.7 134
SB1 3 12.47 .83 1259 10.54 88.4
§82 3 1247 6.78 1232 8.99 45.0
§83 3 12.80 6.88 1303 9.31 60.0
584 3 12.78 6.83 12.78 8.82 1210 8.07 49.1 490.3
S8S 3 12.80 8.76 1278 8.73 1139 9.65 56.4 5§7.0
sBs8 3 12.80 8.76 1283 8.76 1343 9.22 63.6 63.5
sB7 3 12.80 6.93 1280 6.91 1183 10.98 63.3 63.8
S88 3 12.80 6.88 12.80 8838 1214 11.98 71.8 719
SB9 3 1280 6.78 12.80 6.76 1289 9.56 63.3 8.7
$B810 3 12.80 8.91 12.78 6.89 1112 8.14 44.4 44.8
1229 88.6_ 18.¢ §9.1 189
sC1 3 15.19 6.81 15.19 6.80 1730 12.90 9.1 5.2
sC2 3 15.21 8.78 15.18 8.79 1512 8.03 39.1 39.1
SC3 3 18.34 6.88 15.34 6.87 1481 10.02 681.3 81.4
SC4 3 1516 6.86 15.14 6.82 1290 10.41 58.5 57.1
SCS 3 15.14 873 15.18 8.72 1174 11.61 50.6 59.7
SC8 3 15.34 8.86 15.29 8.84 1801 12.53 9.9 94.8
1498 678 _ 218 §7.9 331
sD 4 10.13 6.78 752 12.24 598.2
SD2 4 10.13 6.81 841 1207 64.8
so3 4 1013 8.78 883 9.44 524
SD4 4 1029 6.83 10.21 6.82 743 1473 88.4 69.0
SDS 4 10.21 6.93 10.19 6.92 974 13.69 81.5 821
SD6 4 10.21 6.83 10.20 6.85 ™1 12.44 56.4 58.1
sO7 4 10.21 8.73 10.20 6.72 707 9.04 456 45.7
SD8 4 1021 8.73 10.21 6.71 034 14,14 857 88.2
SD9 4 1026 8.76 10.20 6.76 543 1219 424 426
| _SD10 4 1024 8.81 10.21 6.79 538 11.73 399 403
764 §9.6 137 60.3 316
SE1 4 1293 6.78 1288 6.75 586 11.58 348 35.3
SE3 4 1293 6.81 12.90 8.78 1084 13.92 76.3 77.0
SE4 4 1280 '6.86 12.80 6.83 1063 17.41 92.2 93.0
SES 4 1275 683 1272 6.91 850 14.38 59.8 60.4
- SE6 4 1273 6.86 12273 6.84 987 10.11 50.0 50.3
SE7 4 1275 673 12.76 8.69 752 11.28 440 445
SE8 4 12.78 6.73 12273 8.70 898 13.39 62.3 83.1
SES 4 12.78 6.78 1275 8.75 1014 13.97 72.9 731
SE10 4 12.75 6.81 12.78 8.80 850 17.68 76.3 76.4
: 900 632 188 637 286
SF1 4 1529 6.81 15.29 6.77 1050 13.09 58.2 58.8
SF2 4 15232 6.81 15.32 8.79 1317 14.96 83.3 83.7
SF3 4 15.32 6.78 15.34 8.78 1339 10.29 58.7 58.6
SF4 4 1534 8.73 15.32 8.72 1054 1458 66.4 668.7
SF5 4 1519 6.96 15.18 8.91 1156 15.01 70.8 71.9
SF8 4 15.18 6.a3 15.18 6.81 885 1458 547 55.0
SF7 4 1519 6.73 15.14 8.7 1245 12.01 85.2 5.9
SF8 4 15.16 6.73 15.13 .87 1183 15.30 79.0 80.6
SF9 4 1516 878 15.14 6.75 947 17.20 70.1 70.9
| _SF10 4 1516 6.81 15.13 8.79 987 16.51 69.6 70.0
111¢ 676 143 882 136
SG1 8 10.11 6.93 10.08 6.90 480 24.58 728 73.7
5G2 8 10.11 6.73 10.08 6.73 507 19.65 €5.3 65.5
494 630 1567 69.6 835
SK1 8 10.29 6.88 10.29 6.86 356 30.05 €5.8 66.3
SK2 8 10.29 6.71 10.25 68.87 329 25.07 535 ° 543
SK3 8 10.29 8.76 10.25 8.74 311 29.88 59.4 60.0
332 69.6 _ 10.0 80.2 9.98
SM1 8 15.19 6.91 15.19 6.87 587 22.92 55.7 56.4
SM2 8 15.24 6.71 15.19 .68 498 25.98 58.7 57.3
SM3 8 15.21 - 6.78 15.19 8.74 408 25.40 44.9 45.3
498 824 6658 83.0 126
PANEL 2 RESULTS
PSAt1 3 10.21 6.71 10.21 8.76 1379 9.98 89.9 88.6
PsSA12 3 10.19 6.83 10.21 6.83 1339 9.83 83.0 828
PSA13 3 10.26 6.86 10.21 6.91 1659 9.93 102.4 101.4
PSA14 3 10.24 6.86 10.21 6.88 1592 .91 28.3 97.8
| PSA1S 3 10.19 6.83 10.24 6.85 1579 8.64 86.0 85.3
1610 91.9 8.91 912 3884
PsSB11 3 12.67 6.65 12271 6.67 1744 8.73 90.7 90.0
PsB12 3 12.70 6.78 1271 6.82 1983 7.90 80.8 79.9
PsB13 3 1270 6.81 1271 6.83 1966 8.51 85.3 846
25123 1 1270 6.81 1271 6.83 1837 8.61 80.6 80.0
PSB1S__ 3 12.70 6.81 12.73 6.78 1552 9.47 75.0 75.4
1818 8256 7.10 820 6.78
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seen in Figure 10. This does not imply there is no volume dependency. Rather, because of the
unusual amount of scatter, a volume dependency may be obscured.

Figures 9 and 10 show the static strengths for the various specimens from Panel #1 as a
function of the nominal cross-sectional area and the ratio of (S/t). Each plot shows a great deal
of scatter for a given width or (S/t) ratio. Assuming a volume dependency on the strength, the
strength should decrease with increasing cross-sectional area for a given width. This trend is not
seen in Figure 10. This does not imply there is no volume dependency. Rather, because of the
unusual amount of scatter, a volume dependency may be obscured.

Figure 11 shows the probability distribution of the static transverse tensile strength based on
the data from Panel #1. When generating the probability distribution of the strength using
Weibull scaling laws, it is best to compare only specimens of similar configurations. However,
from a statistical point of view, it is also desirable to have a large number of specimens to
evaluate. As each specimen failed in the same mode - transverse tensile failure, it is reasonable,
albeit not optimal, to evaluate all of the specimens (n = 59) from Panel #1 as one data set. Using
a linear regression technique, the Weibull parameters were found to be m = 5.32 and 0. = 66.9
Mpa (9.71 ksi). When considering the specimens with a S/t ratio of 3 (n=22)and 4 (n = 29)
individually, the Weibull parameters were found to be m = 5.00, . = 65.7 Mpa (9.53 ksi) and m
=4.90, o, = 69.1 Mpa (9.90 ksi) respectively. The results of the static transverse tension
strengths are comparable with those found by other investigators for a similar material system
tested under three-point bending but with thinner laminates and larger (5/) ratios; O’Brien and
Salkepar, evaluatin‘g 33 AS4/3501-6 specimens found m and o to be 7.63 and 61.1 Mpa (8.87
ksi) respectively [5]. The larger m value associated with our data is consistent with the greater

scatter of the data. A plot of the probability distribution for the 10 specimens from Panel #2 is
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shown in Figure 12 along with the Weibull parameters. The values of m and o were found to be

to be 13.0 and 92.2 Mpa (13.38 ksi) respectively.

Transverse Tensile Fatigue Strength Measurements

The results of the fatigue testing can be seen in Figure 13. Individual specimen data (fatigue
loading) are found in Table 6. Forty eight different specimens were tested under the conditions
of 20 Hz, R=0.1. At a frequency of 5 Hz, six and five specimens were tested at R = 0.1 andR =
0.5 values respectively. Many tests were stopped at 10° and 10° cycles. The number in
parentheses represents the number of specimens tested at o = 20 Hz, R = 0.1 that were stopped at
10° or 10° cycles. The number of tests stopped at 10° or 10® cycles as well as a fuller description
of the testing parameters are given for those specimens that were tested at conditions other than
© =20Hz, R=0.1.

Figure 14 shows four typical specimen failures along with the number of cycles-to-failure for
the particular specimens. The specimens all exhibited transverse tensile failures on the lower
surface. The final fracture surface exhibited a variety of patterns with the crack “kicking” left or
right from the initial failure site. Regardless of whether the final fracture pattern through the
thickness of the specimen was nearly vertical or angled, the moment arm / was measured as the
distance from the centerline of the edge support roller to the location of tensile failure along the
bottom surface of the specimen. The distance & represents the distance from the centerline of the
center loading roller to the location of tensile failure as measured along the bottom surface of the

specimen.
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TABLE 6--Individual Specimen Data for Transverse Tension Fatigue, 90° Bend Tests.

Nominal Local
Specimen Frequency Load Width, w Width, w Thickness,t Span, § Failure Location Cycles 4o-
1D3# o, (Hz) R Ratio (S4) {rmm) {mm) {mm) (mm) 5 (mm) Failure, NT
FA12 20 01 085 3 10.16 10.21 6.81 20.42 1.49 1420
FA16 20 01 0985 3 10.16 10.21 6.76 20.27 0.88 210
FA20 20 01 085 3 10.16 10.21 6.88 20.65 1000000 *
FA23 20 01 08 3 10.16 10.18 6.78 20.35 1000000 *
FA27 20 01 095 3 10.16 10.21 6.93 20.80 100000 *
FA28 20 01 085 3 10.16 10.18 6.91 20.73 0.60 7920
FA31 20 01 085 3 10.16 10.17 6.81 20.42 100000 *
FA38 20 01 085 3 10.16 10.19 6.93 20.80 0.94 1797
FA47 20 0.1 095 3 10.16 10.20 6.90 20.70 12.74 100000 *
FAS52 20 01 095 3 10.16 10.19 6.78 20.35 1.28 34
FAB2 20 01 0985 3 10.16 10.26 6.83 20.50 0.54 2417
FAG3 20 01 095 3 10.16 10.24 6.81 20.42 0.67 306
FA11 20 0.1 08 3 10.16 10.24 6.83 20.50 0.71 1630
FA13 20 0.1t 085 3 10.16 10.29 6.83 20.50 1000000 *
FA17 20 01 08 3 10.16 10.21 6.90 20.69 0.71 720
FA24 20 01 08 3 10.16 10.17 6.55 19.66 1000000 *
FA26 20 01 08 3 10.16 10.21 6.78 20.35 1000000 *
FA29 20 01 08 3 10.16 10.19 6.90 20.69 5.58 28
FA30 20 01 085 3 10.16 10.19 6.86 20.57 1000000 *
FA32 20 0.1 085 3 10.16 10.21 6.85 20.54 1.565 352
FA33 20 01 085 3 10.16 10.19 6.81 20.42 0.77 310
FAE6 20 01 085 3 12.70 1275 6.76 20.27 1.26 3484
FAG8 20 01 085 3 12.70 12.75 6.92 20.76 0.14 696
FA70 20 01 08 3 12.70 12.78 6.86 20.57 100000 *
FA72 20 01 08 3 12.70 12.76 6.78 20.35 0.63 643
FA74 20 01 085 3 12.70 12.75 6.91 20.73 0.00 100000 *
FA4 20 0.1 080 3 10.16 10.24 6.86 20.57 2.58 130000
FAB 20 01 080 3 10.16 10.24 6.74 20.23 0.11 5150
FA9 20 01 080 3 10.16 10.20 6.88 20.65 4.74 202100
FA19 20 0.1 080 3 10.16 10.19 6.91 20.73 1.82 73
FA22 20 0.t 080 3 10.16 10.21 6.83 20.50 0.65 100000 *
FA36 20 01 o080 3 10.16 10.21 6.79 20.38 100000 *
FA43 20 01 o080 3 10.16 10.19 6.85 20.54 0.86 3675
FAS0 20 0.1 080 3 10.16 10.21 6.82 20.46 2.36 361
FA3 20 01 075 3 10.16 10.21 6.73 20.19 1000000 *
FA8 20 01 075 3 10.16 10.17 6.90 20.69 1000000 *
FA18 20 01 075 3 10.16 10.17 6.91 20.73 100000 *
FA21 20 01 075 3 10.16 10.19 6.83 20.50 100000 *
FA37 20 01 075 3 10.16 10.20 6.93 20.80 0.33 81089
FA42 20 01 075 3 10.16 10.17 6.82 20.46 0.74 65
FA48 20 01 075 3 10.16 10.19 6.91 20.73 100000 *
FAS51 20 01 075 3 10.16 10.20 6.78 20.35 100000 *
FA1 5 01 08 3 10.16 10.21 6.83 20.50 0.04 6470
FA2 5 01 08 3 10.16 10.22 6.81 20.42 1.63 210
FA39 5 01 08 3 10.16 10.21 6.93 20.80 1.05 332
FA41 5 01 085 3 10.16 10.21 6.85 20.54 3.35 32
FA46 5 01 085 3 10.16 10.22 6.78 20.35 100000 *
FA53 5 0.1 085 3 10.16 10.22 6.86 20.57 0.43 11
FA40 5 05 075 3 10.16 10.17 6.83 20.50 100000 *
FA49 5 05 075 3 10.16 10.24 6.91 20.73 0.48 4682
FAS6 5 05 085 3 10.16 10.24 6.81 20.42 1.49 68877
FAB0 5 05 085 3 10.16 10.25 6.90 20.69 0.24 8
FAG4 5 3 10.16 10.24 6.91 20.73 100000 *

0.5 085

Note: * indicates test was stopped at 10° or 10° cycles.
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Failure Location Influence on Strength

The transverse tensile failure location of over 80% of the specimens was within 20% of the
distance from the centerline of the center loading roller to the centerline of the support rollers.
Figure 15 shows the distribution of the normalized failure location where the normalized failure
location is defined as the distance from the center loading roller to the tensile failure location (J)
divided by half the span length (0.5S). Two specimens, including FA29 (N=28 cycles) failed
under the support roller. In Figure 16, the cycles-to-failure are shown for the various strength

ratios as a function of the normalized failure location.
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DISCUSSION

Testing of the optimum-sized configuration consistently yielded transverse tensile failures yet
still exhibited a great deal of scatter. It was anticipated the smallest configuration would yield
transverse tensile failures as from a “Strength of Materials™ approach, the ratio of transverse
tensile stress to shear stress for a rectangular cross-section subjected to three-point bending is
twice the span-to-thickness ratio [4]. Considering the transverse tensile strength of 90°
graphite/epoxy laminates is of similar magnitude as the shear strength (o1r~ 51.7 MPa, 112~ 93
MPa) and considerably smaller than the transverse compressive strength (o1c ~ 206 MPa), it
would be reasonable to expect failure to initiate at the tensile surface [7]. Further, the finite
element analysis of the smallest configuration under three-point bending loaded with the average
experimental failure load showed the maximum transverse tensile stress was comparable to the
transverse tensile strength. It is unclear then whether the large scatter in the static strengths is
due to material variability, i.e. inherent presence of flaws or voids, or manufacturing variability,
i.e. improper or poor processing of the panels themselves. Considering other researchers have
found considerably less scatter when testing 90° laminates of comparable material systems in
three point bending [4,5], it is probable the scatter is due to the manufacturing variability of the
particular panels from which the specimens were taken. There did not appear to be a correlation
between the failure loads and the number of pits present in a particular specimen. Considering
the degree of scatter of transverse strengths in the specimens from Panel #1, it was decided that
fatigue specimens would be taken only from Panel #2, whose specimens exhibited considerably
less scatter those of Panel #1 under static loading.

Before starting the fatigue testing, certain trends were considered likely to occur. First, a

steep S-N curve was considered possible. Although a high moduli graphite/epoxy material
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system was being tested, the fibers were oriented in the 90° orientation, rather than a 0°
orientation. Therefore, the matrix would likely see more strain. As the tested laminates are
composed solely of 90° plies without the benefit of any ‘constraining’ plies to constrain matrix
cracking, once the crack growth reached a Characteristic Damage stage, defined by stable crack
growth, damage would progress quickly to failure [8]. Recognizing that fatigue strain limit
decreases with an increase of off-axis angled plies, opening displacement mode would probably
be more important than a sliding displacement occurring parallel to the fibers. Another
expectation of the testing was that some specimens would fail by transverse shear failures due to
the small (S/t) ratio. Shorter lives were also anticipated due to the testing occurring in load
control; displacement and energy control loading have been shown to tend to produce longer
lives [9].

The original fatigue testing was to be performed at 5 Hz and 0.1 Hz and tests stopped if
specimens did not fail after 10° cycles. However, initial testing at 5 Hz produced fatigue lives of
10° cycles, even at high load ratios. The test program was then modified so tests were performed
primarily at 5 Hz and stopped at 10° cycles. Examining the S-N curve in Figure 8, it can be seen
that the testing produced a great deal of scatter. The number of tests stopped at 10* and 10°
cycles is given in parentheses. Looking only at the highest load ratio, the fatigue lives range
from an order of 10" to 10° cycles. A similar trend can be seen at the other load levels. The
range of scatter seems to decrease slightly when looking at the lower load levels. Comparing the
data at (P/P.r) equals 0.95 and 0.75, one can see the fatigue lives at the lower load level are
generally longer than at the higher load level. Comparing the data for R=0.1 at 20 Hz and 5 Hz,
there seems to be little frequency dependency. However, any dependency may be obscured by

the large amount of overall scatter of the data. Comparing the fatigue data associated with a
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frequency of 5 Hz and R = 0.1 and R = 0.5 values, again, there seems to be little distinction
between the two loadings. However, it would be unwise to draw any strong conclusions from
this data, as once again there is too much scatter evident.

By taking specimens solely from Panel #2, it was hoped that scatter due to manufacturing, as
seen in Panel #1’s static strength data, would be minimized. However, if the static results of the
specimens from Panel #2 were skewed due to that particular portion of the panel being of very
good quality compared to the rest of Panel #2, then the fatigue lives could exhibit substantial
scatter. However, this does not seem very likely as the specimens were cut from the portion of
the panel with the most uniform C-scan patterns. Other possible sources of scatter could be the
lack of edge polishing of the specimens. However, this was purposely not performed so as to
mimic ‘real-world’ structures, which would likely not have their edges polished. Overall, this
preliminary study shows that further tests should be performed in order to determine whether the
variability of the data was due primarily to panel and/or specimen preparation or due to material

variability, inherent in the 90° bend specimen.
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CONCLUSIONS

Researchers have found in bonded skin/stiffener/frame composite reinforced panels, failure
initiated in adhesive pocket at the interface of the skin/stiffener and propagated as transverse
crack in skin laminate or flange laminate near the flange tip. A finite element analysis was
performed to evaluate the validity of the result, based on a “Strength of Materials” approach, that
the ratio of the maximum transverse tensile stress to maximum shear stress equals twice the
span-to-thickness (S/7) ratio. Modelling a small three-point bend specimen, corresponding to a
specimen with width = 10.2 mm, t = 6.76 mm, (S/t) = 3, a nonlinear static finite element analysis
was performed. The finite element model produced a ratio of the predicted maximum transverse
tensile stress to predicted maximum shear stress of 5.28 whereas the “strength of materials”
approach for the same sized configuration would predict a ratio of 6. The predicted maximum
longitudinal tensile stress was comparable to the transverse tensile strength. However, the
maximum longitudinal compressive stress, located just under the central roller, was also
comparable to the transverse compression strength. Further discretization of the existing finite
element model near the central roller contact point should be performed.

An experimental investigation of the transverse tensile strength of IM6/3501 composite
materials was then performed on specimens subjected to three-point bending under static and
fatigue loading. In this study, a parametric study of (S/t) effects was performed experimentally
to determine an “optimum” configuration where optimum was defined as the smallest
configuration which consistently failed in transverse tension when subjected to three-point
bending under static loading. The optimum configuration was found to be specimens with
nominal dimensions of (S/t) equal 3 and width equal 10.2 mm (0.4 inches). ‘Fatigue testing under

three-point bending was performed on specimens of the optimum configuration. The S-N data
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showed a great deal of scatter. At this time, it is unclear whether the scatter in the data is due
primarily to material variability (i.e. the presence of voids or flaws) or manufacturing variability
(i.e. improper preparation of panels and/or specimens).

Future work should begin with tension fatigue testing under similar test conditions of 90
degree laminates taken from Panel #2. This would provide insight into the integrity of the three-
point bend test procedure. Additional fatigue testing should also include testing under three-
point bending of similar-sized specimens as the transverse bending specimens used in this study
taken from panels manufactured by different sources. These tests would be performed at similar
conditions as the current study. Testing of thinner laminates performed under similar conditions
should also be undertaken to monitor to assess sizing effects due to thickness of the laminate and
clumping of same-angle plies. Periodic monitoring of the edges and crack growth would be
beneficial in further understanding of the fatigue growth. A comparison of these results may
provide understanding into whether the scatter observed in this study is due to material
variability or manufacturing variability. If the data produced less scatter, fatigue growth laws

could possibly be determined.
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Deformed Configuration under

Figure 1. Illustration of Pressure Pillowing in a Pressurized Fuselage
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Figure 2. Schematic of Test Set-up
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Figure 3. Three-Point Bend Test Set-up
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Figure 4. Finite Element Mesh
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Figure 9. Effect of Nominal Cross-sectional Area on Transverse Tensile Strength, Panel #1
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Figure 10. Effect of (S/t) Ratio on Transverse Tensile Strength, Panel #1
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Figure 11. Probability Distribution of the Static Transverse Tensile Strength, Panel #1
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Figure 12. Probability Distribution of the Static Transverse Tensile Strength, Panel #2
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Figure 13. Transverse Tension S-N Curve under Three-Point Bending (Number of tests
stopped at 10° and 10° cycles given in parentheses)
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Figure 14. Representative Transverse Tension Fatigue Failures
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Figure 15. Distribution of the Normalized Failure Location of
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Transverse Tension Fatigue Data
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Figure 16. Effect of the Normalized Failure Location on

Transverse Tension Fatigue Cycles-to-Failure
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